
On the origins of Hilbert’s sixth problem: physics and the
empiricist approach to axiomatization

Leo Corry

Abstract. The sixth of Hilbert’s famous 1900 list of twenty-three problems is a programmatic
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1. Introduction

Of the many important and brilliant plenary talks delivered in ICMs ever since the
inception of this institution in 1897 in Zurich, none has so frequently been quoted and,
possibly, none has had the kind of pervasive influence, as the one delivered by David
Hilbert in 1900 at the second ICM in Paris, under the title of “Mathematical Problems”.
Rather than summarizing the state of the art in a central branch of mathematics, Hilbert
attempted to “lift the veil” and peer into the development of mathematics in the century
that was about to begin. He chose to present a list of twenty-three problems that in his
opinion would and should occupy the efforts of mathematicians in the years to come.
This famous list has been an object of mathematical and historical interest ever since.

The sixth problem of the list deals with the axiomatization of physics. It was
suggested to Hilbert by his own recent research on the foundations of geometry. He
proposed “to treat in the same manner, by means of axioms, those physical sciences in
which mathematics plays an important part.” This problem differs from most others
on Hilbert’s list in essential ways, and its inclusion has been the object of noticeable
reaction from mathematicians and historians who have discussed it throughout the
years. Thus, in reports occasionally written about the current state of research on the
twenty-three problems, the special status of the sixth problem is readily visible: not
only has it been difficult to decide to what extent the problem was actually solved (or
not), but one gets the impression that, of all the problems on the list, this one received
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the least attention from mathematicians throughout the century and that relatively
little effort was directed at solving it ([11], [25]).

Many a historical account simply dismissed the sixth problem as a slip on Hilbert’s
side, as a curiosity, and as an artificial addition to what would otherwise appear as
an organically conceived list, naturally connected to his broad range of mathematical
interests (e.g., [26], p. 159). In fact, this is how Hilbert’s interest in physical topics
in general as well as his few, well-known incursions into physical problems have
been traditionally seen. According to this view, these are seen as sporadic incursions
into foreign territory, mainly for the purposes of finding some new applications to
what would otherwise be purely mathematically motivated ideas. This is the case, for
instance, with Hilbert’s solution of the Boltzmann equation in kinetic theory of gases
in 1912. Starting in 1902, most of Hilbert’s mathematical energies had been focused
on research related with the theory of linear integral equations, and his solution of
the Boltzmann equation could thus be seen as no more than an application of the
techniques developed as part of that theory to a particular situation, the physical
background of which would be of no direct interest to Hilbert. An account in this
spirit appears in Stephen G. Brush’s authoritative book on the development of kinetic
theory, according to which:

When Hilbert decided to include a chapter on kinetic theory in his treatise on
integral equations, it does not appear that he had any particular interest in the
physical problems associated with gases. He did not try to make any detailed
calculations of gas properties, and did not discuss the basic issues such as the
nature of irreversibility and the validity of mechanical interpretations which
had exercised the mathematician Ernst Zermelo in his debate with Boltzmann
in 1896–97. A few years later, when Hilbert presented his views on the con-
temporary problems of physics, he did not even mention kinetic theory. We
must therefore conclude that he was simply looking for another possible appli-
cation of his mathematical theories, and when he had succeeded in finding and
characterizing a special class of solutions (later called “normal”) …his interest
in the Boltzmann equation and in kinetic theory was exhausted. ([4], p. 448)

A further important physical context where Hilbert’s appeared prominently con-
cerns the formulation of the gravitational field-equations of the general theory of
relativity (GTR). On November 20, 1915, Hilbert presented to the Royal Scientific
Society in Göttingen his version of the equations, in the framework of what he saw as
an axiomatically formulated foundation for the whole of physics. During that same
month of November, Einstein had been struggling with the final stages of his own
effort to formulate the generally covariant equations that lie at the heart of GTR. He
presented three different versions at the weekly meetings of the Prussian Academy
of Sciences in Berlin, before attaining his final version, on November 25, that is, five
days after Hilbert had presented his own version.
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Einstein had visited Göttingen in the summer of 1915 to lecture on his theory
and on the difficulties currently encountered in his work. Hilbert was then in the
audience and Einstein was greatly impressed by him. Earlier accounts of Hilbert’s
involvement with problems associated with GTR had in general traced it back to this
visit of Einstein or, at the earliest, to the years immediately preceding it. As in the case
of kinetic theory, this contribution of Hilbert was often seen as a more or less furtive
incursion into physics, aimed at illustrating the power and the scope of validity of the
“axiomatic method” and as a test of Hilbert’s mathematical abilities while trying to
“jump onto the bandwagon of success” of Einstein’s theory.

In biographical accounts of Hilbert, his lively interest in physics has never been
overlooked, to be sure, but it mostly has been presented as strictly circumscribed in
time and scope. Thus for instance, in his obituary of Hilbert, Hermann Weyl ([24],
p. 619) asserted that Hilbert’s work comprised five separate, and clearly discernible
main periods: (1) Theory of invariants (1885–1893); (2) Theory of algebraic number
fields (1893–1898); (3) Foundations, (a) of geometry (1898–1902), (b) of mathematics
in general (1922–1930); (4) Integral equations (1902–1912); (5) Physics (1910–1922).
Weyl’s account implies that the passage from any of these fields to the next was always
clear-cut and irreversible, and a cursory examination of Hilbert’s published works may
confirm this impression. But as Weyl himself probably knew better than many, the list
of Hilbert’s publications provides only a partial, rather one-sided perspective of his
intellectual horizons, and this is particularly the case when it comes to his activities
related to physics.

Recent historical research has brought to light a very different picture of Hilbert’s
involvement with physics, and in particular of the real, truly central place of the ideas
embodied in the sixth problem within the general edifice of Hilbert’s scientific out-
look. Hilbert’s involvement with physical issues spanned most of his active scientific
life, and the essence of his mathematical conceptions cannot be understood without
reference to that involvement. More importantly, the famous “axiomatic approach”
that came to be identified with Hilbert’s mathematical achievements and with his per-
vasive influence on twentieth-century mathematics is totally misunderstood if it is not
seen, in the first place, as connected with his physical interests. Under this perspec-
tive, the involvement with kinetic theory and GTR are seen as a natural outgrowth of
the development of Hilbert’s world of ideas, and by no means as sporadic, isolated
incursions into unknown territories. Moreover, contrary to a commonly held view,
the sixth problem is the only one in the entire list of 1900 that refers to an idea that
continually engaged the active attention of Hilbert for a very long period of time, at
least between 1894 and 1932 ([5]).

The key to a balanced understanding of the role of physics within Hilbert’s in-
tellectual horizon is found not so much in his publications, as it is in the complex
academic network of personal interactions and diverse activities that he was continu-
ally part of. Especially worthy of attention is his teaching, first at Königsberg and –
more importantly – after 1895 at Göttingen. At the mathematical institute established
by Felix Klein, Hilbert became the leader of a unique scientific center that brought
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together a gallery of world-class researchers in mathematics and physics. One cannot
exaggerate the significance of the influence exerted by Hilbert’s thought and personal-
ity on all who came out of this institution. More often than not, these lectures were far
from systematic and organized presentations of well-known results and established
theories. Rather, Hilbert often used his lectures as a public stage where he could ex-
plore new ideas and think aloud about the issues that occupied his mind at any point
in time. In a lecture held in commemorating his seventieth birthday, Hilbert vividly
recalled how these lectures provided important occasions for the free exploration of
yet untried ideas. He thus said:

The closest conceivable connection between research and teaching became a
decisive feature of my mathematical activity. The interchange of scientific
ideas, the communication of what one found by himself and the elaboration of
what one had heard, was from my early years at Königsberg a pivotal aspect
of my scientific work. …In my lectures, and above all in the seminars, my
guiding principle was not to present material in a standard and as smooth
as possible way, just to help the student keep clean and ordered notebooks.
Above all, I always tried to illuminate the problems and difficulties and to
offer a bridge leading to currently open questions. It often happened that in
the course of a semester the program of an advanced lecture was completely
changed, because I wanted to discuss issues in which I was currently involved
as a researcher and which had not yet by any means attained their definite
formulation. ([16], p. 79)

The collection of Hilbert’s lecture notes offers an invaluable source of information
for anyone interested in understanding his scientific horizon and contributions.

2. Axiomatics and formalism

A main obstacle in historically understanding the significance of the sixth problem
has been the widespread image of Hilbert as the champion of formalism in modern
mathematics. The traditional association of Hilbert’s name with the term “formal-
ism” has often proved to be misleading, since the term can be understood in two
completely different senses that are sometimes conflated. One sense refers to the
so-called “Hilbert program” that occupied much of Hilbert’s efforts from abut 1920.
Although involving significant philosophical motivations, at the focus of this program
stood a very specific, technical mathematical problem, namely, the attempt to prove the
consistency of arithmetic with strictly finitist arguments. The point of view embodied
in the program was eventually called the “formalist” approach to the foundations of
mathematics, and it gained much resonance when it became a main contender in the
so-called “foundational crisis” in mathematics early in the twentieth century.

Even though Hilbert himself did not use the term “formalism” in this context,
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associating his name with term conceived in this narrow sense seems to be essentially
justified. It is misleading, however, to extend the term “Hilbert program” – and the
concomitant idea of formalism – to refer to Hilbert’s overall conception of the essence
of mathematics. Indeed, a second meaning of the term formalism refers to a general
attitude towards the practice of mathematics and the understanding of the essence of
mathematical knowledge that gained widespread acceptance in the twentieth century,
especially under the aegis of the Bourbaki group. Jean Dieudonné, for instance,
explained what he saw as the essence of Hilbert’s mathematical conceptions in a
well-known text where he referred to the analogy with a game of chess. In the
latter, he said, one does not speak about truths but rather about following correctly a
set of stipulated rules. If we translate this into mathematics we obtain the putative,
“formalist” conception often attributed to Hilbert ([6], p. 551): “mathematics becomes
a game, whose pieces are graphical signs that are distinguished from one another by
their form.”

Understanding the historical roots and development of the sixth problem goes
hand in hand with an understanding of Hilbert’s overall conception of mathematics as
being far removed from Dieudonné’s chess-game metaphor. It also comprises a clear
separation between the “Hilbert program” for the foundations of arithmetic, on the
one hand, and Hilbert’s lifetime research program for mathematics and physics and
its variations throughout the years, on the other hand. In this regard, and even before
one starts to look carefully at Hilbert’s mathematical ideas and practice throughout
his career, it is illustrative to look at a quotation from around 1919 – the time when
Hilbert began to work out the finitist program for the foundations of arithmetic in
collaboration with Paul Bernays – that expounds a view diametrically opposed to that
attributed to him many years later by Dieudonné, and that is rather widespread even
today. Thus Hilbert said:

We are not speaking here of arbitrariness in any sense. Mathematics is not like
a game whose tasks are determined by arbitrarily stipulated rules. Rather, it is
a conceptual system possessing internal necessity that can only be so and by
no means otherwise. ([16], p. 14)

The misleading conflation of the formalist aspect of the “Hilbert program” with
Hilbert’s overall views about mathematics and its relationship with physics is also
closely related with a widespread, retrospective misreading of his early work on the
foundations of geometry in purely formalist terms. However, the centrality attributed
by Hilbert to the axiomatic method in mathematics and in science is strongly connected
with thoroughgoing empiricist conceptions, that continually increased in strength as
he went on to delve into ever new physical disciplines, and that reached a peek in
1915–17, the time of his most intense participation in research associated with GTR.

The axiomatic approach was for Hilbert, above all, a tool for retrospectively inves-
tigating the logical structure of well-established and elaborated scientific theories,
and the possible difficulties encountered in their study, and never the starting point for
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the creation of new fields of enquiry. The role that Hilbert envisaged for the axiomatic
analysis of theories is succinctly summarized in the following quotation taken from
a course on the axiomatic method taught in 1905. Hilbert thus said:

The edifice of science is not raised like a dwelling, in which the foundations
are first firmly laid and only then one proceeds to construct and to enlarge the
rooms. Science prefers to secure as soon as possible comfortable spaces to
wander around and only subsequently, when signs appear here and there that
the loose foundations are not able to sustain the expansion of the rooms, it sets
about supporting and fortifying them. This is not a weakness, but rather the
right and healthy path of development. ([5], p. 127)

3. Roots and early stages

Physics and mathematics were inextricably interconnected in Hilbert’s scientific hori-
zon ever since his early years as a young student in his native city of Königsberg, where
he completed his doctorate in 1885 and continued to teach until 1895. Hilbert’s disser-
tation and all of his early published work dealt with the theory of algebraic invariants.
Subsequently he moved to the theory of algebraic number fields. But his student
notebooks bear witness to a lively interest in, and a systematic study of, an astound-
ing breadth of topics in both mathematics and physics. Particularly illuminating is a
notebook that records his involvement as a student with the Lehrbuch der Experimen-
talphysik by Adolph Wüllner (1870). This was one of many textbooks at the time that
systematically pursued the explicit reduction of all physical phenomena (particularly
the theories of heat and light, magnetism and electricity) to mechanics, an approach
that underlies all of Hilbert’s early involvement with physics, and that he abandoned
in favor of electrodynamical reductionism only after 1912.

In the intimate atmosphere of this small university, the student Hilbert partici-
pated in a weekly seminar organized under the initiative of Ferdinand Lindemann –
who was also Hilbert’s doctoral advisor – that was also attended by his good friends
Adolf Hurwitz and Hermann Minkowski, by the two local physicist, Woldemar Voigt
and Paul Volkmann, and by another fellow student Emil Wiechert, who would also
become Hilbert’s colleague in Göttingen and the world’s leading geophysicist. The
participants discussed recent research in all of branches of mathematics and physics,
with special emphasis on hydrodynamics and electrodynamics, two topics of common
interest for Hilbert and Minkowski throughout their careers. From very early on, fun-
damental methodological questions began to surface as part of Hilbert’s involvement
with both mathematics and physics.

On the mathematical side one may mention the intense research activity associ-
ated with the names of Cayley and Klein in projective geometry, concerning both the
main body of results and the foundations of this discipline; the questions sparked by
the discovery and publication of non-Euclidean geometries, which raised philosoph-
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ical concerns to a larger extent than they elicited actual mathematical research; the
introduction by Riemann of the manifold approach to the analysis of space and its
elaboration by Lie and Helmholtz; the question of the arithmetization of the contin-
uum as analyzed by Dedekind, which had also important foundational consequences
for analysis; the gradual re-elaboration of axiomatic techniques and perspectives as a
main approach to foundational questions in mathematics, especially in the hands of
Grassmann and of the Italian geometers. Hilbert’s intellectual debts to each of these
traditions and to the mathematicians that partook in it – even though more complex
and subtle than may appear on first sight – belong to the directly visible, received
image of Hilbert the geometer.

What is remarkable, and virtually absent from the traditional historiography until
relatively recently, is the extent to which similar parallel developments in physics
played a fundamental role in shaping Hilbert’s views on axiomatization. Very much
like geometry, also physics underwent major changes throughout the nineteenth cen-
tury. These changes affected the contents of the discipline, its methodology, its insti-
tutional setting, and its image in the eyes of its practitioners. They were accompanied
by significant foundational debates that intensified considerably toward the end of the
century, especially among German-speaking physicists. Part of these debates also
translated into specific attempts to elucidate the role of basic laws or principles in
physical theories, parallel in certain respects to that played by axioms in mathemat-
ical theories. As with geometry, foundational questions attracted relatively limited
attention from practitioners of the discipline, but some leading figures were indeed
involved in them.

From about 1850 on, physics became focused on quantification and the search
for universal mathematical laws as its fundamental methodological principles, on
the conservation of energy as a fundamental unifying principle, and very often on
mechanical explanation of all physical phenomena as a preferred research direction.
If explanations based on imponderable “fluids” had dominated so far, mechanical
explanations based on the interaction of particles of ordinary matter now became much
more frequent. In particular, the mechanical theory of ether gave additional impulse
to the concept of “field” that would eventually require a mechanical explanation.
Likewise, the kinetic theory of gases gave additional support to the foundational
role of mechanics as a unifying, explanatory scheme. On the other hand, these very
developments gave rise to many new questions that would eventually challenge the
preferential status of mechanics and lead to the formulation of significant alternatives
to it, especially in the form of the so-called “electromagnetic worldview”, as well as
in the “energicist” and the phenomenological approaches.

Beginning in the middle of the century, several physicists elaborated on the possi-
bility of systematically clarifying foundational issues of this kind in physical theories,
based on the use of “axioms”, “postulates” or “principles”. This was not, to be sure,
a really central trend that engaged the leading physicists in lively discussions. Still,
given the vivid interest on Volkmann in the topic, Hilbert became keenly aware of
many of these developments and discussed them with his colleagues at the seminar.
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Above all, the ideas of Heinrich Hertz and Ludwig Boltzmann on the foundations
of physics strongly influenced him, not only at the methodological level, but also
concerning his strong adherence to the mechanical reductionist point of view.

The lecture notes of courses in geometry taught by Hilbert in Königsberg illumi-
natingly exemplify the confluence of the various points mentioned in the preceding
paragraphs. Central to this is his conception of geometry as a natural science, close in
all respects to mechanics and the other physical disciplines, and opposed to arithmetic
and other mathematical fields of enquiry. This was a traditional separation, adopted
with varying degrees of commitment, among the German mathematicians (especially
in Göttingen) since the time of Gauss. Even geometers like Moritz Pasch, who had
stressed a thoroughly axiomatic approach in their presentations of projective geome-
try [20], would support such an empiricist view of geometry. In the introduction to a
course taught in 1891, for instance, Hilbert expressed his views as follows:

Geometry is the science dealing with the properties of space. It differs essen-
tially from pure mathematical domains such as the theory of numbers, algebra,
or the theory of functions. The results of the latter are obtained through pure
thinking …The situation is completely different in the case of geometry. I can
never penetrate the properties of space by pure reflection, much the same as
I can never recognize the basic laws of mechanics, the law of gravitation or
any other physical law in this way. Space is not a product of my reflections.
Rather, it is given to me through the senses. ([5], p. 84)

The connection between this view and the axiomatic approach as a proper way
to deal with this kind of sciences was strongly supported by the work of Hertz.
Hilbert had announced another course in geometry for 1893, but for lack of students
registered it was postponed until 1894. Precisely at this time, Hertz’s Principles of
Mechanics [13] was posthumous published, and Hilbert got enthusiastic notice of the
book from his friend Minkowski. Minkowski had been in Bonn since 1885 where
he came under the strong influence of Hertz, to the point that the latter became his
main source of scientific inspiration ([15], p. 355). In the now famous introduction
to his book, Hertz described physical theories as “pictures” (Bilder) that we form
for ourselves of natural phenomena, and suggested three criteria to evaluate among
several possible images of one and the same object: permissibility, correctness, and
appropriateness. Permissibility corresponds very roughly to consistency, whereas
correctness and appropriateness are closer to the kind of criteria that will appear later
on in Hilbert’s Grundlagen der Geometrie (GdG – see below).

In the lecture notes of his 1893–94 course, Hilbert referred once again to the
natural character of geometry and explained the possible role of axioms in elucidating
its foundations. As he had time to correct the notes, he now made explicit reference to
Hertz’s characterization of a “correct” scientific image (Bild) or theory. Thus Hilbert
wrote ([5], p. 87):
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Nevertheless the origin [of geometrical knowledge] is in experience. The
axioms are, as Hertz would say, images or symbols in our mind, such that
consequents of the images are again images of the consequences, i.e., what we
can logically deduce from the images is itself valid in nature.

Hilbert also pointed out the need of establishing the independence of the axioms
of geometry, while alluding, once again, to the kind of demand stipulated by Hertz.
Stressing the objective and factual character of geometry, Hilbert wrote:

The problem can be formulated as follows: What are the necessary, sufficient,
and mutually independent conditions that must be postulated for a system of
things, in order that any of their properties correspond to a geometrical fact
and, conversely, in order that a complete description and arrangement of all
the geometrical facts be possible by means of this system of things.

The axioms of geometry and of physical disciplines, Hilbert said, “express ob-
servations of facts of experience, which are so simple that they need no additional
confirmation by physicists in the laboratory.”

The empirical character of geometry has its clear expression in the importance
attributed to Gauss’s measurement of the sum of angles of a triangle formed by three
mountain peaks in Hannover. Hilbert found these measurements convincing enough to
indicate the correctness of Euclidean geometry as a true description of physical space.
Nevertheless, he envisaged the possibility that some future measurement would yield
a different result. This example would arise very frequently in Hilbert’s lectures on
physics in years to come, as an example of how the axiomatic method should be ap-
plied in physics, where new empirical facts are often found by experiment. Faced with
new such findings that seem to contradict an existing theory, the axiomatic analysis
would allow making the necessary modifications on some of the basic assumptions of
the theory, without however having to modify its essential logical structure. Hilbert
stressed that the axiom of parallels is likely to be the one to be modified in geome-
try if new experimental discoveries would necessitate so. Geometry was especially
amenable to a full axiomatic analysis only because of its very advanced stage of
development and elaboration, and not because of any other specific, essential trait
concerning its nature that would set it apart from other disciplines of physics. Thus,
in a course on mechanics taught in 1899, the year of publication of GdG, he said:

Geometry also [like mechanics] emerges from the observation of nature, from
experience. To this extent, it is an experimental science.…But its experimental
foundations are so irrefutably and so generally acknowledged, they have been
confirmed to such a degree, that no further proof of them is deemed necessary.
Moreover, all that is needed is to derive these foundations from a minimal set
of independent axioms and thus to construct the whole edifice of geometry by
purely logical means. In this way [i.e., by means of the axiomatic treatment]
geometry is turned into a pure mathematical science. In mechanics it is also
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the case that all physicists recognize its most basic facts. But the arrangement
of the basic concepts is still subject to changes in perception …and therefore
mechanics cannot yet be described today as a pure mathematical discipline, at
least to the same extent that geometry is. ([5], p. 90. Emphasis in the original)

Thus, at the turn of the century, Hilbert consolidated his view of the axiomatic
method as a correct methodology to be applied, in parallel and with equal importance,
to geometry and to all other physical disciplines. The publication of GdG helped
spread his ideas very quickly and in strong association with geometry alone. But the
idea of applying the same point of view to physics, although made known to the public
only in the 1900 list of problems, was for him natural and evident from the outset. In his
course of 1899, Hilbert devoted considerable effort to discussing the technical details
of, as well as the logical and conceptual interrelations among, the main principles
of analytical mechanics: the energy conservation principle, the principle of virtual
velocities and the D’Alembert principle, the principles of straightest path and of
minimal constraint, and the principles of Hamilton and Jacobi. All of this will appear
prominently in Hilbert’s later own elaboration of the program for the axiomatization
of physics.

4. Grundlagen der Geometrie

Hilbert’s Grundlagen der Geometrie embodied his first published, comprehensive
presentation of an axiomatized mathematical discipline. Based on a course taught in
the winter semester of 1898–99, it appeared in print in June of 1899. The declared
aim of the book was to lay down a “simple” and “complete” system of “mutually
independent” axioms, from which all known theorems of geometry might be deduced.
The axioms were formulated for three systems of undefined objects named “points”,
“lines”, and “planes”, and they establish mutual relations that these objects must
satisfy. The axioms were grouped into five categories: axioms of incidence, of order,
of congruence, of parallels, and of continuity. From a purely logical point of view,
the groups have no real significance in themselves. However, from the geometrical
point of view they are highly significant, for they reflect Hilbert’s actual conception
of the axioms as an expression of spatial intuition: each group expresses a particular
way that these intuitions manifest themselves in our understanding.

Hilbert’s first requirement, that the axioms be independent, is the direct man-
ifestation of the foundational concerns that guided his research. When analyzing
independence, his interest focused mainly on the axioms of congruence, continuity
and of parallels, since this independence would specifically explain how the various
basic theorems of Euclidean and projective geometry are logically interrelated. This
requirement had already appeared – albeit more vaguely formulated – in Hilbert’s
early lectures on geometry, as a direct echo of Hertz’s demand for “appropriateness”
of physical theories (i.e., the demand of “distinctness and simplicity” for the axioms
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of the theory). This time Hilbert also provided the tools to prove systematically the
mutual independence among the individual axioms within the groups and among the
various groups of axioms in the system. However, this was not for Hilbert an exercise
in analyzing abstract relations among systems of axioms and their possible models.
The motivation for enquiring about the mutual independence of the axioms remained,
essentially, a geometrical one. For this reason, Hilbert’s original system of axioms
was not the most economical one from the logical point of view. Indeed, several
mathematicians noticed quite soon that Hilbert’s system of axioms, seen as a single
collection rather than as a collection of five groups, contained a certain degree of
redundancy ([19], [23]). Hilbert’s own aim was to establish the interrelations among
the groups of axioms, embodying the various manifestations of space intuition, rather
than among individual axioms belonging to different groups.

The second one, simplicity is also related to Hertz’s appropriateness. Unlike the
other requirements, it did not become standard as part of the important mathemati-
cal ideas to which GdG eventually led. Through this requirement Hilbert wanted to
express the desideratum that an axiom should contain “no more than a single idea.”
However, he did not provide any formal criterion to decide when an axiom is sim-
ple. Rather this requirement remained implicitly present in GdG, as well as in later
works of Hilbert, as a merely aesthetic guideline that was never transformed into a
mathematically controllable feature.

The idea of a complete axiomatic system became pivotal to logic after 1930 follow-
ing the works of Gödel, and in connection with the finitist program for the foundations
of arithmetic launched by Hilbert and his collaborators around 1920. This is not, how-
ever, what Hilbert had in mind in 1899, when he included a requirement under this
name in the analysis presented in GdG. Rather, he was thinking of a kind of ”prag-
matic” completeness. In fact, what Hilbert was demanding here is that an adequate
axiomatization of a mathematical discipline should allow for an actual derivation of
all the theorems already known in that discipline. This was, Hilbert claimed, what
the totality of his system of axioms did for Euclidean geometry or, if the axiom of
parallels is ignored, for the so-called absolute geometry, namely that which is valid
independently of the latter.

Also the requirement of consistency was to become of paramount importance
thereafter. Still, as part of GdG, Hilbert devoted much less attention to it. For one
thing, he did not even mention this task explicitly in the introduction to the book. For
another, he devoted just two pages to discussing the consistency of his system in the
body of the book. In fact, it is clear that Hilbert did not intend to give a direct proof of
consistency of geometry here, but even an indirect proof of this fact does not explicitly
appear in GdG, since a systematic treatment of the question implied a full discussion
of the structure of the system of real numbers, which was not included. Rather,
Hilbert suggested that it would suffice to show that the specific kind of synthetic
geometry derivable from his axioms could be translated into the standard Cartesian
geometry, if the axes are taken as representing the entire field of real numbers. Only
in the second edition of GdG, published in 1903, Hilbert added an additional axiom,
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the so-called “axiom of completeness” (Vollständigkeitsaxiom), meant to ensure that,
although infinitely many incomplete models satisfy all the other axioms, there is only
one complete model that satisfies this last axiom as well, namely, the usual Cartesian
geometry.

Hilbert’s axiomatic analysis of geometry was not meant to encourage the possibil-
ity of choosing arbitrary combinations of axioms within his system, and of exploring
their consequences. Rather, his analysis was meant to enhance our understanding
of those systems with a more intuitive, purely geometrical significance – Euclidean
geometry, above all – and that made evident the connection of his work with long-
standing concerns of the discipline throughout the nineteenth century [8]. As already
stressed, the definition of systems of abstract axioms and the kind of axiomatic anal-
ysis described above was meant to be carried out always retrospectively, and only for
“concrete”, well-established and elaborated mathematical entities.

The publication of the Grundlagen was followed by many further investigations
into Hilbert’s technical arguments, as well as by more general, methodological and
philosophical discussions. One important such discussion appeared in the correspon-
dence between Hilbert and Gottlob Frege. This interchange has drawn considerable
attention of historians and philosophers, especially for the debate it contains between
Hilbert and Frege concerning the nature of mathematical truth. But this frequently-
emphasized issue is only one side of a more complex picture advanced by Hilbert
in his letters. In particular, it is interesting to notice Hilbert’s explanation to Frege,
concerning the main motivations for undertaking his axiomatic analysis: the latter
had arisen, in the first place, from difficulties Hilbert had encountered when dealing
with physical, rather than mathematical theories. Echoing once again ideas found
in the introduction to Hertz’s textbook, and clearly having in mind the problematic
conceptual situation of the kinetic theory of gases at the turn of the century, Hilbert
stressed the need to analyze carefully the process whereby physicists continually add
new assumptions to existing physical theories, without properly checking whether
or not the former contradict the latter, or consequences of the latter. In a letter of
December 29, 1899, Hilbert wrote to Frege:

After a concept has been fixed completely and unequivocally, it is on my view
completely illicit and illogical to add an axiom – a mistake made very fre-
quently, especially by physicists. By setting up one new axiom after another
in the course of their investigations, without confronting them with the as-
sumptions they made earlier, and without showing that they do not contradict
a fact that follows from the axioms they set up earlier, physicists often allow
sheer nonsense to appear in their investigations. One of the main sources of
mistakes and misunderstandings in modern physical investigations is precisely
the procedure of setting up an axiom, appealing to its truth, and inferring from
this that it is compatible with the defined concepts. One of the main purposes
of my Festschrift was to avoid this mistake. ([9], p. 40)
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In a different passage of the same letter, Hilbert commented on the possibility
of substituting the basic objects of an axiomatically formulated theory by a different
system of objects, provided the latter can be put in a one-to-one, invertible relation
with the former. In this case, the known theorems of the theory are equally valid for
the second system of objects. Concerning physical theories, Hilbert wrote:

All the statements of the theory of electricity are of course valid for any other
system of things which is substituted for the concepts magnetism, electricity,
etc., provided only that the requisite axioms are satisfied. But the circumstance
I mentioned can never be a defect in a theory [footnote: it is rather a tremendous
advantage], and it is in any case unavoidable. However, to my mind, the
application of a theory to the world of appearances always requires a certain
measure of good will and tactfulness: e.g., that we substitute the smallest
possible bodies for points and the longest possible ones, e.g., light-rays, for
lines. At the same time, the further a theory has been developed and the more
finely articulated its structure, the more obvious the kind of application it has
to the world of appearances, and it takes a very large amount of ill will to
want to apply the more subtle propositions of [the theory of surfaces] or of
Maxwell’s theory of electricity to other appearances than the ones for which
they were meant …([9], p. 41)

Hilbert’s letters to Frege help understanding the importance of the link between
physical and mathematical theories on the development of his axiomatic point of
view. The latter clearly did not involve either an empty game with arbitrary systems
of postulates nor a conceptual break with the classical, nineteenth-century entities and
problems of mathematics and empirical science. Rather it sought after an improve-
ment in the mathematician’s understanding of the latter. This motto was to guide
much of Hilbert’s incursions into several domains of physics over the years to come.

5. Physics and the 1900 list of problems

In the introductory section of his Paris talk, Hilbert stressed the important role he
accorded to empirical motivations as a fundamental source of nourishment for what
he described as a “living organism”, in which mathematics and the physical sciences
appear tightly interrelated. The empirical motivations underlying mathematical ideas,
Hilbert said, should by no means be taken as opposed to rigor. On the contrary,
contrasting an “opinion occasionally advocated by eminent men”, Hilbert insisted that
the contemporary quest for rigor in analysis and arithmetic should in fact be extended
to both geometry and the physical sciences. He was alluding here, most probably, to
Kronecker and Weierstrass, and the Berlin purist tendencies that kept geometry and
applications out of their scope of interest. Rigorous methods are often simpler and
easier to understand, Hilbert said, and therefore, a more rigorous treatment would
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only perfect our understanding of these topics, and at the same time would provide
mathematics with ever new and fruitful ideas. In explaining why rigor should not be
sought only within analysis, Hilbert actually implied that this rigor should actually
be pursued in axiomatic terms. He thus wrote:

Such a one-sided interpretation of the requirement of rigor would soon lead
to the ignoring of all concepts arising from geometry, mechanics and physics,
to a stoppage of the flow of new material from the outside world, and finally,
indeed, as a last consequence, to the rejection of the ideas of the continuum
and of irrational numbers. But what an important nerve, vital to mathematical
science, would be cut by rooting out geometry and mathematical physics! On
the contrary I think that wherever mathematical ideas come up, whether from
the side of the theory of knowledge or in geometry, or from the theories of
natural or physical science, the problem arises for mathematics to investigate
the principles underlying these ideas and to establish them upon a simple and
complete system of axioms, so that the exactness of the new ideas and their
applicability to deduction shall be in no respect inferior to those of the old
arithmetical concepts. (Quoted from [12], p. 245)

Using a rhetoric reminiscent of Volkmann’s work, Hilbert described the develop-
ment of mathematical ideas as an ongoing, dialectical interplay between the two poles
of thought and experience. He also added an idea that was of central importance to
Göttingen scientists for many decades, namely, the conception of the “pre-established
harmony” between mathematics and nature ([21]). The importance of investigating
the foundations of mathematics does not appear as an isolated concern, but rather as
an organic part of the manifold growth of the discipline in several directions. Hilbert
thus said:

Indeed, the study of the foundations of a science is always particularly attrac-
tive, and the testing of these foundations will always be among the foremost
problems of the investigator …[But] a thorough understanding of its special
theories is necessary for the successful treatment of the foundations of the
science. Only that architect is in the position to lay a sure foundation for a
structure who knows its purpose thoroughly and in detail. (Quoted from [12],
p. 258)

The first two problems in Hilbert’s list are Cantor’s continuum hypothesis and the
compatibility of the axioms of arithmetic. In formulating the second problem on his
list, Hilbert stated more explicitly than ever before, that among the tasks related to
investigating an axiomatic system, proving its consistency would be the most impor-
tant one. Yet, Hilbert was still confident that this would be a rather straightforward
task, easily achievable “by means of a careful study and suitable modification of the
known methods of reasoning in the theory of irrational numbers.” Clearly Hilbert
meant his remarks in this regard to serve as an argument against Kronecker’s negative
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reactions to unrestricted use of infinite collections in mathematics, and therefore he
explicitly asserted that a consistent system of axioms could prove the existence of
higher Cantorian cardinals and ordinals. Hilbert’s assertion is actually the first pub-
lished mention of the paradoxes of Cantorian set theory, which here were put forward
with no special fanfare ([7], p. 301). He thus established a clear connection between
the two first problems on his list through the axiomatic approach. Still, Hilbert was
evidently unaware of the difficulties involved in realizing this point of view, and, more
generally, he most likely had no precise idea of what an elaborate theory of systems
of axioms would involve. On reading the first draft of the Paris talk, several weeks
earlier, Minkowski understood at once the challenging implications of Hilbert’s view,
and he hastened to write to his friend:

In any case, it is highly original to proclaim as a problem for the future, one
that mathematicians would think they had already completely possessed for a
long time, such as the axioms for arithmetic. What might the many laymen in
the auditorium say? Will their respect for us grow? And you will also have a
though fight on your hands with the philosophers. ([22], p. 129)

Frege’s reaction to the GdG proved Minkowski’s concern to be justified, as his
main criticism referred to the status of axioms as implicit definitions.

The next three problems in the list are directly related with geometry and, although
not explicitly formulated in axiomatic terms, they address the question of finding the
correct relationship between specific assumptions and specific, significant geometri-
cal facts. The fifth problem, for instance, relates to the question of the foundations
of geometry as it had evolved over the last third of the nineteenth century along two
parallel paths. On the one hand, there was the age-old tradition of elementary syn-
thetic geometry, where the question of foundations more naturally arises in axiomatic
terms. On the other hand, there was the tradition associated with the Helmholtz–
Lie problem, that derived directly from the work of Riemann and that had a more
physically-grounded orientation connected with the question of spaces that admit the
free mobility of rigid bodies. Whereas Helmholtz had only assumed continuity as
underlying the motion of rigid bodies, in applying his theory of groups of transfor-
mations to this problem, Lie was also assuming the differentiability of the functions
involved. Hilbert’s work on the foundations of geometry, especially in the context
that led to GdG, had so far been connected with the first of these two traditions, while
devoting much less attention to the second one. Now in his fifth problem, he asked
whether Lie’s conditions, rather than assumed, could actually be deduced from the
group concept together with other geometrical axioms.

As a mathematical problem, the fifth one led to interesting, subsequent develop-
ments. Not long after his talk, in November 18, 1901, Hilbert himself proved that,
in the plane, the answer is positive, and he did so with the help of a then innovative,
essentially topological, approach [14]. That the answer is positive in the general case
was satisfactorily proved only in 1952 ([10], [18]). The inclusion of this problem in
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the 1900 list underscores the actual scope of Hilbert’s views over the question of the
foundations of geometry and over the role of axiomatics. Hilbert suggested here the
pursuit of an intricate kind of conceptual clarification involving assumptions about
motion, differentiability and symmetry, such as they appear intimately interrelated
in the framework of a well-elaborate mathematical theory, namely, that of Lie. This
quest, that also became typical of the spirit of Hilbert’s axiomatic involvement with
physical theories, suggests that his foundational views on geometry were very broad
and open-ended, and did not focus on those aspects related with the synthetic ap-
proach to geometry. In particular, the fifth problem emphasizes the prominent role
that Hilbert assigned to physical considerations in his approach to geometry. In the
long run, this aspect of Hilbert’s view resurfaced at the time of his involvement with
GTR ([5], Ch. 7–8). In its more immediate context, however, it makes the passage
from geometry to the sixth problem appear as a natural one within the list.

Indeed, if the first two problems in the list show how the ideas deployed in GdG led
in one direction towards foundational questions in arithmetic, then the fifth problem
suggests how they also naturally led, in a different direction, to Hilbert’s call for
the axiomatization of physical science in the sixth problem. The problem was thus
formulated as follows:

The investigations on the foundations of geometry suggest the problem: To
treat in the same manner, by means of axioms, those physical sciences in
which mathematics plays an important part; in the first rank are the theory of
probabilities and mechanics. (Quoted in [12], p. 258)

As examples of what he had in mind Hilbert mentioned several existing and
well-known works: the fourth edition of Mach’s Die Mechanik in ihrer Entwick-
lung, Hertz’s Prinzipien, Boltzmann’s 1897 Vorlesungen Über die Principien der
Mechanik, and also Volkmann’s 1900 Einführung in das Studium der theoretischen
Physik. Boltzmann’s work offered a good example of what axiomatization would
offer, as he had indicated, though only schematically, that limiting processes could be
applied, starting from an atomistic model, to obtain the laws of motion of continua.
Hilbert thought it convenient to go in the opposite direction also, i.e., to derive the laws
of motions of rigid bodies by limiting processes, starting from a system of axioms
that describe space as filled with continuous matter in varying conditions. Thus one
could investigate the equivalence of different systems of axioms, an investigation that
Hilbert considered to be of the highest theoretical importance.

This is one of the few places where Hilbert emphasized Boltzmann’s work over
Hertz’s in this regard, and this may give us the clue to the most immediate trigger that
was in the back of Hilbert’s mind when he decided to include this problem in the list.
Indeed, Hilbert had met Boltzmann several months earlier in Munich, where the latter
gave a talk on recent developments in physics. Boltzmann had not only discussed
ideas connected with the task that Hilbert was now calling for, but he also adopted
a rhetoric that seems to have appealed very much to Hilbert. In fact, Boltzmann
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had suggested that one could follow up the recent history of physics with a look at
future developments. Nevertheless, he said, “I will not be so rash as to lift the veil
that conceals the future” ([2], p. 79). Hilbert, on the contrary, opened the lecture
by asking precisely, “who among us would not be glad to lift the veil behind which
the future lies hidden” and the whole trust of his talk implied that he, the optimistic
Hilbert, was helping the mathematical community to do so.

Together with the well-known works on mechanics referred to above, Hilbert also
mentioned a recent work by the Göttingen actuarial mathematician Georg Bohlmann
on the foundations of the calculus of probabilities [1]. The latter was important for
physics, Hilbert said, for its application to the method of mean values and to the kinetic
theory of gases. Hilbert’s inclusion of the theory of probabilities among the main
physical theories whose axiomatization should be pursued has often puzzled readers
of this passage. The notes of a course taught in 1905 on the axiomatic method show that
this was a main point in Hilbert’s views on physics because of the use of probabilities
also in insurance mathematics and in problems of observational error calculation in
astronomy. It is also remarkable that Hilbert did not mention electrodynamics among
the physical disciplines to be axiomatized, even though the second half of the Gauss–
Weber Festschrift, where Hilbert’s GdG was published, contained a parallel essay by
Wiechert on the foundations of electrodynamics. At any rate, Wiechert’s presentation
was by no means axiomatic, in any sense of the term. On the other hand, the topics
addressed by Wiechert would start attracting Hilbert’s attention over the next years,
at least since 1905.

This sixth problem is not really a problem in the strict sense of the word, but
rather a general task for whose complete fulfillment Hilbert set no clear criteria. Thus,
Hilbert’s detailed account in the opening remarks of his talk as to what a meaningful
problem in mathematics is, and his stress on the fact that a solution to a problem
should be attained in a finite number of steps, does not apply in any sense to the sixth
one. On the other hand, the sixth problem has important connections with three other
problems on Hilbert’s list: the nineteenth (“Are all the solutions of the Lagrangian
equations that arise in the context of certain typical variational problems necessarily
analytic?”), the twentieth (dealing with the existence of solutions to partial differential
equations with given boundary conditions), closely related to the nineteenth and at the
same time to Hilbert’s long-standing interest on the Dirichlet Principle, and, finally,
the twenty-third (an appeal to extend and refine the existing methods of variational
calculus). Like the sixth problem, the latter two are general tasks rather than specific
mathematical problems with a clearly identifiable, possible solution. All these three
problems are also strongly connected to physics, though unlike the sixth, they are
also part of mainstream, traditional research concerns in mathematics. In fact, their
connections to Hilbert’s own interests are much more perspicuous and, in this respect,
they do not raise the same kind of historical questions that Hilbert’s interest in the
axiomatization of physics does.

A balanced assessment of the influence of the problems on the development of
mathematics throughout the century must take into account not only the intrinsic
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importance of the problems, but also the privileged institutional role of Göttingen in
the mathematical world with the direct and indirect implications of its special status.
However, if Hilbert wished to influence the course of mathematics over the coming
century with his list, then it is remarkable that his own career was only very partially
shaped by it. Part of the topics covered by the list belonged to his previous domains
of research, while others belonged to domains where he never became active. On
the contrary, domains that he devoted much effort to over the next years, such as
the theory of integral equations, were not contemplated in the list. In spite of the
enormous influence Hilbert had on his students, the list did not become a necessary
point of reference of preferred topics for dissertations. To be sure, some young
mathematicians, both in Göttingen and around the world, did address problems on
the list and sometimes came up with important mathematical achievements that helped
launch their own international careers. But this was far from the only way for talented
young mathematicians to reach prominence in or around Göttingen. But, ironically,
the sixth problem, although seldom counted among the most influential of the list, can
actually be counted among those that received greater attention from Hilbert himself
and from his collaborators and students over the following years.

6. Concluding remarks

For all its differences and similarities with other problems on the list, the important
point that emerges from the above account is that the sixth problem was in no sense
disconnected from the evolution of Hilbert’s early axiomatic conception at its very
core. Nor was it artificially added in 1900 as an afterthought about the possible exten-
sions of an idea successfully applied in 1899 to the case of geometry. Rather, Hilbert’s
ideas concerning the axiomatization of physical science arose simultaneously with his
increasing enthusiasm for the axiomatic method and they fitted naturally into his over-
all view of pure mathematics, geometry and physical science – and the relationship
among them – by that time.

From 1900 on, the idea of axiomatizing physical theories was a main thread that
linked much of Hilbert’s research and teaching. Hilbert taught every semester at
least one course dealing with a physical discipline, and by the end of his career he
had covered most of the important fields that were at the cutting edge of physics,
currently attracting the best research efforts of young and promising minds (see the
appendix to this article). The axiomatic point of view provided a unifying methodol-
ogy from which to approach many of the topics in which Hilbert became interested.
In 1905 he taught a course on the axiomatic method where he presented for the first
time a panoramic view of various physical disciplines from an axiomatic perspective:
mechanics, thermodynamics, probability calculus, kinetic theory, insurance mathe-
matics, electrodynamics, psychophysics. The variety of physical topics pursued only
grew over the years. The extent of the influence of Hilbert’s ideas on physics on con-
temporary research is a more complex question that cannot be discussed here for lack
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of space. Still, it is relevant to quote here an account of Hilbert’s ideas as described
by the physicist on whom Hilbert’s influence became most evident, Max Born. On
the occasion of Hilbert’s sixtieth birthday, at a time when he was deeply involved
together with Bernays in the technical difficulties raised by the finitist program, Born
wrote the following words:

The physicist set outs to explore how things are in nature; experiment and
theory are thus for him only a means to attain an aim. Conscious of the
infinite complexities of the phenomena with which he is confronted in every
experiment, he resists the idea of considering a theory as something definitive.
He therefore abhors the word “Axiom”, which in its usual usage evokes the
idea of definitive truth. The physicist is thus acting in accordance with his
healthy instinct, that dogmatism is the worst enemy of natural science. The
mathematician, on the contrary, has no business with factual phenomena, but
rather with logic interrelations. In Hilbert’s language the axiomatic treatment
of a discipline implies in no sense a definitive formulation of specific axioms
as eternal truths, but rather the following methodological demand: specify
the assumptions at the beginning of your deliberation, stop for a moment
and investigate whether or not these assumptions are partly superfluous or
contradict each other. ([3])

The development of physics from the beginning of the century, and especially
after 1905, brought many surprises that Hilbert could not have envisaged in 1900 or
even when he lectured at Göttingen on the axioms of physics in 1905; yet, Hilbert was
indeed able to accommodate these new developments to the larger picture of physics
afforded by his program for axiomatization. In fact, some of his later contributions to
mathematical physics, particularly his contributions to GTR, came by way of realizing
the vision embodied in this program.

7. Appendix: Hilbert’s Göttingen courses on physics (and related
fields): 1895–1927

For an explanation on the sources used for compiling this list, see [5], p. 450 (WS =
Winter Semester, SS = Summer Semester, HS = Special Autumn [Herbst] Semester).

WS 1895/96 Partial Differential Equations
SS 1896 Ordinary Differential Equations
SS 1898 Mechanics
SS 1899 Variational Calculus
WS 1900/01 Partial Differential Equations
SS 1901 Linear Partial Differential Equations
WS 1901/02 Potential Theory
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SS 1902 Selected Topics in Potential Theory
WS 1902/03 Continuum Mechanics - Part I
SS 1903 Continuum Mechanics - Part II
WS 1903/04 Partial Differential Equations
WS 1904/05 Variational Calculus
SS 1905 Logical Principles of Mathematical Thinking (and of Physics)
SS 1905 Integral Equations
WS 1905/06 Partial Differential Equations
WS 1905/06 Mechanics
SS 1906 Integral Equations
WS 1906/07 Continuum Mechanics
SS 1907 Differential Equations
WS 1909/10 Partial Differential Equations
SS 1910 Selected Chapters in the Theory of Partial Differential Equations
WS 1910/11 Mechanics
SS 1911 Continuum Mechanics
WS 1911/12 Statistical Mechanics
SS 1912 Radiation Theory
SS 1912 Ordinary Differential Equations
SS 1912 Mathematical Foundations of Physics
WS 1912/13 Molecular Theory of Matter
WS 1912/13 Partial Differential Equations
WS 1912/13 Mathematical Foundations of Physics
SS 1913 Foundations of Mathematics (and the axiomatization of Physics)
SS 1913 Electron Theory
WS 1913/14 Electromagnetic Oscillations
WS 1913/14 Analytical Mechanics
WS 1913/14 Exercises in Mechanics (together with H. Weyl)
SS 1914 Statistical Mechanics
SS 1914 Differential Equations
WS 1914/15 Lectures on the Structure of Matter
SS 1915 Structure of Matter (Born’s Theory of Crystals)
WS 1915/16 Differential Equations
SS 1916 Partial Differential Equations
SS 1916 Foundations of Physics I (General Relativity)
WS 1916/17 Foundations of Physics II (General Relativity)
SS 1917 Electron Theory
SS 1918 Ordinary Differential Equations
WS 1918/19 Space and Time
WS 1918/19 Partial Differential and Integral Equations
HS 1919 Nature and Mathematical Knowledge
WS 1920 Mechanics
SS 1920 Higher Mechanics and the New Theory of Gravitation
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WS 1920/21 Mechanics and the New Theory of Gravitation
SS 1921 Einstein’s Gravitation Theory. Basic Principles of the Theory

of Relativity
SS 1921 On Geometry and Physics
SS 1922 Statistical Mechanics
WS 1922/23 Mathematical Foundations of Quantum Theory
WS 1922/23 Knowledge and Mathematical Thought
WS 1922/23 Knowledge and Mathematical Thought
SS 1923 Our Conception of Gravitation and Electricity
WS 1923/24 On the Unity of Science
SS 1924 Mechanics and Relativity Theory
WS 1926/27 Mathematical Methods of Quantum Theory
SS 1930 Mathematical Methods of Modern Physics
WS 1930/31 Nature and Thought
WS 1931/32 Philosophical Foundations of Modern Natural Science
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